CONTENTS
History of mathematics
Quadrilateral
ü Angle Sum Property of a Quadrilateral
ü Types of Quadrilaterals
ü Properties of a Parallelogram
ü Another Condition for a Quadrilateral to be a Parallelogram
ü The Mid-point Theorem
ü Summary
Areas of Parallelograms and Triangles
ü Introduction
ü Figures on the same Base and between the same Parallels
ü Parallelograms on the same Base and
ü Between the same Parallels
ü Triangles on the same Base and between
ü The same Parallels
ü Summary
Circles
ü Introduction
ü Circles and its Related Terms: A Review
ü Angle Subtended by a Chord at a Point
ü Perpendicular from the Centre to a Chord
ü Circle through Three Points
ü Equal Chords and their Distances from the Centre
ü Angle Subtended by an Arc of a Circle
ü Cyclic Quadrilaterals
ü Summary
Constructions
ü Introduction
ü Basic Constructions
ü Some Constructions of Triangles
ü Summary
Surface Areas and Volumes
ü Introduction
ü Surface Area of a Cuboid and a Cube
ü Surface Area of a Right Circular Cylinder
ü Surface Area of a Right Circular Cone
ü Surface Area of a Sphere
ü Volume of a Cuboid
ü Volume of a Cylinder
ü Volume of a Right Circular Cone
ü Volume of a Sphere
ü Summary
Statistics
ü Introduction
ü Collection of Data
ü Presentation of Data
ü Geographical Representation of Data
ü Measures of Central Tendency
ü Summary
Probability
ü Introduction
ü Probability – an Experimental Approach
ü Summary
HISTORY OF MATHEMATICS
Mathematics as a formal area of teaching and learning was developed about 5,000 years ago by the Sumerians. They did this at the same time as they developed reading and writing. However, the roots of mathematics go back much more than 5,000 years.
Throughout their history, humans have faced the need to measure and communicate about time, quantity, and distance. The Ishango Bone is a bone tool handle approximately 20,000 years old.
The picture given below shows Sumerian clay tokens whose use began about 11,000 years ago. Such clay tokens were a predecessor to reading, writing, and mathematics.
The development of reading, writing, and formal mathematics 5,000 years ago allowed the codification of math knowledge, formal instruction in mathematics, and began a steady accumulation of mathematical knowledge.
Mathematics as a Discipline

1. Mathematics as a human endeavor. For example, consider the math of measurement of time such as years, seasons, months, weeks, days, and so on. Or, consider the measurement of distance, and the different systems of distance measurement that developed throughout the world. Or, think about math in art, dance, and music. There is a rich history of human development of mathematics and mathematical uses in our modern society.
2. Mathematics as a discipline. You are familiar with lots of academic disciplines such as archeology, biology, chemistry, economics, history, psychology, sociology, and so on. Mathematics is a broad and deep discipline that is continuing to grow in breadth and depth. Nowadays, a Ph.D. research dissertation in mathematics is typically narrowly focused on definitions, theorems, and proofs related to a single problem in a narrow subfield in mathematics.
3. Mathematics as an interdisciplinary language and tool. Like reading and writing, math is an important component of learning and "doing" (using one's knowledge) in each academic discipline. Mathematics is such a useful language and tool that it is considered one of the "basics" in our formal educational system.
YOU CAN ALSO REFER TO http://www.mycbseguide.com/
This comment has been removed by a blog administrator.
ReplyDelete